

Modern Space-Time

Ken S. Tucker

January 27, 2007

Abstract

The Interdefinition of Length and Time.

Since 1983, the meter, second and speed of light "c" have been defined by N meters = $c * 1$ second with $N = 299,792,458$.

We find, that's had a profound effect on Relativity Theory.

In the MKS system of units we have the basis vectors $\vec{e}^0, \vec{e}^1, \vec{e}^2, \vec{e}^3$ such that the magnitudes are

$$|\vec{e}^i| = 1 \text{ meter, } \{i = 1, 2, 3\} \text{ and } |\vec{e}^0| = c * 1 \text{ second.} \quad (1)$$

These are related by $N * |\vec{e}^i| = |\vec{e}^0|$ as per International definition. We may of course eliminate the N by an arbitrary change in the length scale to simplify to $|\vec{e}^i| = |\vec{e}^0|$.

With it understood the \vec{e}^μ are the 4D basis vectors, we define our metrics by the scalar products herein,

$$g_{uv} = \vec{e}_u \cdot \vec{e}_v \text{ and } g^{uv} = \vec{e}^u \cdot \vec{e}^v, \quad (2)$$

being the covariant and contravariant metric tensors.

In a Cartesian Coordinate System that yields,

$$g_{00} = g_{11} = g_{22} = g_{33} = 1. \quad (3)$$

1

An Alternative to the conventional Minkowski Metric.

In flat space you set $g_{00} = g_{11} = g_{22} = g_{33} = 1$ and $g_{0i} = -dx^i/dx^0$, that works very well when merging SR with GR.

The thing most researchers avoid are nonorthogonal metrics like g_{0i} , but aberration happens when relative speed separates CS's, so you can't really hide it by using $\sqrt{(-1)}$, just because g_{0i} looks complicated.

Unfortunately SR was established algebraically, and a sort of evolution occurred employing the use of tensors by Einstein for GR. What should have happened, in a more ideal historical hindsight, is to begin with,

$$U_\mu U^\mu = 1, \{ \mu = 0, 1, 2, 3 \}, U^\mu = dx^\mu/ds \quad (4)$$

as a definition in SR. Then expand that to detail time and space as,

$$U_0 U^0 + U_i U^i = 1, \{i = 1, 2, 3\} \quad (5)$$

The $U_i U^i$ is *absolute velocity* and since one can always find a CS where motion of something is zero, is the same as saying motion is relative, hence, $U_i U^i = 0 = \text{absolute motion}$ is the covariant way (for all CS's using tensors) of writing "motion is relative".

Of course relative motion is retained by U^i (by choice) and being non-zero generally produces,

$$U_i = 0, \text{ generally.} \quad (6)$$

Now you can use association to obtain,

$$U_i = g_{i\mu} U^\mu = 0 \quad (7)$$

and expand index " μ " in time and space $\{0, i\}$ to,

$$0 = g_{i0} U^0 + g_{ij} U^j. \quad (8)$$

Use a bit of algebra and see,

$$g_{i0} = -g_{ij} U^j / U^0 = -g_{ij} dx^j / dx^0. \quad (9)$$

Specifying a flat space-time metric g_{ij} simplifies to the Kronecker delta and so, $g_{i0} = -dx^i / cdt$ simplified, and is aberration...a real effect well established by experiment.

Now let's stick those nonorthogonal critters in $ds^2 = g_{\mu\nu} dx^\mu dx^\nu$

by expanding indices " μ " and " ν " over time and space,

$$ds^2 = g_{00} dx^0 dx^0 + 2g_{0i} dx^0 dx^i + g_{ij} dx^i dx^j \quad (10)$$

From far above, sub in $g_{0i} = -g_{ij} dx^j / dx^0$ and get

$$ds^2 = g_{00} dx^0 dx^0 - g_{ij} dx^i dx^j \text{ (generally).} \quad (11)$$

Sub in a simplified metric $g_{00}, g_{11} \dots = 1$ and $dx^0 = cdt$ to get the familiar

$$ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2 \quad (12)$$

that Minkowski and later Einstein needed for GR.

In relativity, the important thing is to deal with relative motion and the vanishing of *absolute* motion at the outset, otherwise a lot of spooky-kooky aberrations appear, (I won't hang other's dirty laundry in public), that I think is best expressed by the tidy, $U_i = 0$.

Anyway if the metric system you choose finds $U_i U^i \neq 0$ you may have a problem.

Above, we see the only metric compatible with $U_i = 0$ is,

$$ds^2 = g_{00} dx^0 dx^0 - g_{ij} dx^i dx^j \text{ (generally).} \quad (13)$$

Note the total absence of g_{i0} terms when absolute motion is excluded and relativity is strictly invoked, essentially "collapsing" the metric relativistically.

Finally, we need to ask if a non-zero result of the equation, $U_i U^i$ is truly indicative of absolute motion as I've assumed?

Regards

Ken S. Tucker