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GENERAL RELATIVITY applied to a  

CHARGE COUPLE 

Ken S. Tucker 

I.  Introduction 

The scenario is simple. Two "naked", (massless) charges "a" and "b" are at rest separated 

by some distance, "S" (the charges are fundamental = -104.803 x 10 esu).  Neither charge 
alone possesses mass-energy, but the system has mass-energy (c = 1), m = a b/S⋅  from 
classical EM theory.  The distance "S" is measured using a light signal, like radar rang-
ing. 
 
To solve the metric "uvg " in this case, one cannot use uvG  = 0, as is traditional in GR, 

due to the inter-dependence of the charges that create the system mass "m", so uv uvG = T  

is employed (the constant -8 Gπ  is suppressed into "T").  Because the situation is simpli-
fied to static, solving 00 00G = T  will provide sufficient conceptual accuracy.  Reference to 

Weinberg's, "Gravitation and Cosmology" Eq.(7.1.3) and Eq.(7.1.7).  
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00 00 00G  =  (g ) = T∇  (1) 

The solution I obtain is as follows, 

00g  = 1 - (a/S) (b/S)  = 1 - A B⋅ ⋅  (2) 

with "A" and "B" being potentials.  The 2A∇  = Laplacian (A) = 0, and likewise for "B".  
Classically the Electric field E(a) = A∇ (+/- won't make a diff, here).  So we collect that 
up and find, Eq.(1) yields, 

00 00G  = E(a) E(b) = T⋅ . (3) 

and letting 2 2E(a) E(b) = (a/S ) (b/S )⋅ ⋅  gives, 
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00T = m/S  ,  (m=a b/S)⋅ , 

the energy density. 
 
We can apply the metric Eq.(2) to find, 

2 2S  = X  + a b⋅ . (4) 

Defining better the meaning: In a flat orthogonal field (3D space is fine) without any 
masses or charges we imagine setting two Points P(a) and P(b). The distance between 
P(a) and P(b) in the absence of any field that may change the velocity of light using the 
above definition of orthogonal space is X.  That's why I call that imaginary, because you 
really need hard objects to bounce photons from to do a real survey. 
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When charges are assigned to the locations P(a) and P(b) we'll define the distance "S" 
between them by using  light waves, but because the "energy density" of the  field is al-
tered by Eq.(3), the velocity of light will not be constant, and so the measure of X and S 
will be  different, as defined in Eq.(4).  For example, let q = |a| = |b| be our generic fun-
damental charge, with a positive magnitude, then, using Eq.(4), 

2 2 2S  = X  + q    (repelling charges, a = b), 

2 2 2S  = X  - q     (attracting charges, a = -b). 

We see S(repel) > S(attract), and so Attraction > Repulsion that difference is in accord 
with gravitational force, and in accord with GR, where the solution originated. 
 
For example:  One can see how gravitational force arises from Coulomb’s force using the 
approximation, 

2 2 2 2 4F = a b/S  = a b/(X  + a b) ~ a b/X  - (a b)  / X⋅ ⋅ ⋅ ⋅ ⋅  (5) 

The last term in Eq.(5) is always negative, independent of the relative polarities of 
charges "a" and "b", hence it is a residual attractive force in the charge couple.  Letting 
M = a b/X⋅  be a mass-energy, that term becomes, 

2f = - M M/X⋅ , 

which is basically Newtonian gravitational force. 
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